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Abstract

Session-based Recommendations recommend the next possi-
ble item for the user with anonymous sessions, whose chal-
lenge is that the user’s behavioral preference can only be
analyzed in a limited sequence to meet their need. Recent
advances evaluate the effectiveness of the attention mech-
anism in the session-based recommendation. However, two
simplifying assumptions are made by most of these attention-
based models. One is to regard the last-click as the query
vector to denote the user’s current preference, and the other
is to consider that all items within the session are favor-
able for the final result, including the effect of unrelated
items (i.e., spurious user behaviors). In this paper, we pro-
pose a novel Dual Sparse Attention Network for the session-
based recommendation called DSAN to address these short-
comings. In this proposed method, we explore a learned
target item embedding to model the user’s current prefer-
ence and apply an adaptively sparse transformation func-
tion to eliminate the effect of the unrelated items. Exper-
imental results on two real public datasets show that the
proposed method is superior to the state-of-the-art session-
based recommendation algorithm in all tests and also demon-
strate that not all actions within the session are useful. To
make our results reproducible, we have published our code
on https://github.com/SamHaoYuan/DSANForAAAI2021.

Introduction
The core of personalized recommendation systems is to rec-
ommend different products or services to users by analyzing
their past behaviors. Therefore, sufficient historical data and
a complete user profile are critical for accurate recommen-
dation results. However, in many practical application sce-
narios, the user often cannot be identified, and their related
historical behaviors cannot be associated. In this case, the
recommender system needs to accurately capture the user’s
intent and preference from a relatively short user session and
generate the recommended results with the limited informa-
tion. Thus, the session-based recommender system, which
aims to predict the next possible click or consumption item
based on the current session, has attracted the attention in
academics and industries (Ludewig and Jannach 2018; Zhao
et al. 2020).
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Figure 1: A motivating example of session-based recom-
mendation. This paper aims to directly model the real tar-
get item representation and alleviate the impact of unrelated
items.

The critical problem of the session-based recommenda-
tion is how to make the best use of limited information to
generate accurate recommendation results. Recently, the at-
tention mechanism, which can automatically assign different
influence weights to items to capture the related informa-
tion, has demonstrated outstanding performance in sequence
modeling and is widely applied in various session-based rec-
ommendation algorithms (Li et al. 2017; Liu et al. 2018; Xu
et al. 2019; Luo et al. 2020). The weighted sum of the items
within the session gives a better representation of the user
preference and improves prediction accuracy, showing the
importance of the attention mechanism in this task.

Although the attention-based methods significantly im-
prove the prediction results, there are still some limitations.
First, the last-click, which is the last user action within a ses-
sion, is usually considered as the user’s current interest (Liu
et al. 2018; Xu et al. 2019; Luo et al. 2020) or used as the
query vector for the weight assignment in RNN (Li et al.
2017), MLP (Liu et al. 2018), and GNN models (Wu et al.
2019), but it does not always accurately reflect the user’s
real preference. For example, as illustrated in Figure 1, if
we use the last-click item iWatch as the query vector, the
resulting attention coefficient is far from the score of using
the item iPhone 11, which is the real target item. Since the
real target item cannot be known in advance, an intuitive so-
lution is to use each item in the candidate set as the query
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vector to find the best one. However, in the real world, the
candidate set is vast, and the enormous computational over-
head makes this choice unacceptable. Second, not all items
in the session are related to the user’s intent; for example,
clicking one item by mistake or browsing through extrane-
ous promotions. Even if we use the real target item, the con-
ventional attention mechanism still give the unrelated item
a small weight, as demonstrated by “book”, “wallet”, “lip-
stick”, and “bag” in the second session of Figure 1, which
may add some useless information to the final representa-
tion of the session. Consequently, this strictly positive score
is wasteful, making models less interpretable and assigning
probability mass to many implausible outputs (Peters, Nicu-
lae, and Martins 2019).

To overcome the issue mentioned above, we propose a
dual sparse attention network for the session-based recom-
mendation. For simplicity, we name the proposed model
DSAN. Specially, we first explore the interaction and cor-
relation between each item within the session and learn a
representation of the user’s current preference based on the
known information by a self-attention network. For conve-
nience, we call this representation target embedding since
it contains the position information of the target item. Not-
ing that we do not use any other unknown information like
the real index of the target item. Subsequently, we use this
target embedding as a query vector and apply a vanilla atten-
tion network to distinguish the importance of different items
within the current session. In this way, we could construct
a more reliable session representation. Finally, we combine
this learned target embedding and the entire session repre-
sentation by a neural network to get a final representation,
which is used to predict the user’s next click. Moreover, to
tackle the possible spurious user behaviors in the session,
we introduce an adaptively sparse transformation function in
both attention layers, which has context-dependent sparsity
patterns to pick out more useful items, give higher weight
to the critical item, and zero value to the useless item in the
session.

The main contributions of this work are summarized as
follows:
• We propose a novel framework based on a dual attention

network composed of self-attention and vanilla attention.
It learns a target embedding with the item-level collabora-
tive information and uses different query, key, and value
vectors for high-level information to model the session-
based recommendation scenario effectively.

• We introduce an adaptively sparse attention mechanism
based on the context to find the possible unrelated item in
the session and retain higher weight for the related items.

• Experiments on two real datasets show that our proposed
model can not only achieve better results than state-of-
the-art methods but also improves the model discernibility
because of the sparse attention mechanism.

Related Work
In this section, we review the related work about the session-
based recommendation, including conventional methods and
neural-network-based methods.

Conventional Methods
Since the user’s identification is unknown, the session-based
recommendation is limited to the context within the ses-
sions. Hence, for conventional methods, simple matrix fac-
torization (Mnih and Salakhutdinov 2008; Koren and Bell
2015) and Item-KNN (Sarwar et al. 2001) are not suitable
for the session-based scene because of ignoring the order
of the user’s behaviors. To be more consistent with the se-
quence scenario, Gu, Dong, and Zeng proposed the model
based on Markov chains, making predictions by the se-
quential connections between adjacent clicks. For sequence-
aware recommendation tasks, FPMC (Rendle, Freuden-
thaler, and Schmidt-Thieme 2010) combines Markov chain
and matrix factorization to simulate the sequential behavior
between two adjacent clicks, which achieves a better result.
Recently, methods based on nearest-neighbors obtain com-
petitive performance. SKNN (Jannach and Ludewig 2017)
is a session-based k-nearest-neighbors approach, which con-
siders the sessions that contain any item of the current ses-
sion as neighbors. STAN (Garg et al. 2019) is an extension
of SKNN that additionally considers three factors, e.g., the
position. However, this kind of approach merely considers
the item relevance information and ignores the transition of
the user’s interest reflected by the session sequences.

Neural-Network-based Methods
In recent years, thanks to the powerful representation ca-
pability of deep learning, neural-network-based methods
have made significant progress in the session-based recom-
mendation. Hidasi et al. first introduced the recurrent neu-
ral network with gated recurrent unit cell to model user
sessions named GRU4Rec. GRU4Rec+ (Tan, Xu, and Liu
2016) proposed a data augmentation method and consid-
ered the changes in user behavior over time, further en-
hancing the prediction results. Moreover, NARM (Li et al.
2017) proposed an encoder-decoder model based on RNN
and attention mechanism. STAMP (Liu et al. 2018) intro-
duced a short-term memory priority model based on the
multi-layer perceptron and the attention mechanism. These
attention-based models separately deal with the user’s last-
click and the whole session, effectively capturing both the
user’s general and current interest. CSRM (Wang et al. 2019)
and CoSAN (Luo et al. 2020) took collaborative neigh-
borhood information into the session-based recommenda-
tion. Then, SR-GNN firstly (Wu et al. 2019) introduced a
graph neural network (GNN) into this task. Furthermore,
GC-SAN (Xu et al. 2019) proposed a graph contextualized
self-attention model, which utilizes both graph neural net-
work and self-attention mechanism. FGNN (Qiu et al. 2019)
used a weighted attention graph layer and a Readout func-
tion to learn embeddings of items and sessions. With the
help of GNN, the model is capable of capturing the complex
transition between items and attains better item embeddings,
which improves the performance to a great extent.

However, all these neural-network-based methods with
the attention model use the last-click or other heuristic ways
to generate the query vector, which ignores the real user’s
current preference. Bert4Rec (Sun et al. 2019) employs the



deep bidirectional self-attention to model user behaviors and
first tries to learn the user’s current preferred target embed-
ding, but the simple repetitive multi-layer structure makes
the model lose the original information.

Preliminary
In this section, we formulate the problem of session-based
recommendation and then introduce the sparse transforma-
tion function, which serves as a fundamental module of our
proposed model.

Problem Statement
The typical task of session-based recommendation is to pre-
dict the item that the user most likely interact with next
based solely on the action records (e.g., clicks) within a short
period. Since the user’s long-term preference profile is un-
known, making decisions with limited information is a con-
siderable challenge.

Let I = {i1, i2, ..., im} denote the set of all unique items
involved in all sessions and S = {s1, s2, ..., sn} denote a
session ordered by timestamps, where sp ∈ I represents the
pth clicked item of the user and n is the length of the session.
In this paper, given a prefix of the session truncated at time
step t, St = {s1, s2, ..., st}(1 < t < n), the goal of the
proposed model is to predict the next click item st+1. To be
exact, the proposed model learns to generate a score ŷi for
each item i ∈ I and then items corresponding to the top-K
scores will be presented to users as results.

Sparse transformation function
The two core components of the attention mechanism are
the alignment model and the transformation function. One is
used to compute attention weights, and the other is to trans-
form weights into probabilities. Usually, the transformation
function is a well-known function softmax (Bridle 1990),
which returns positive values and dense output probabilities.
However, this nonzero probability may assign weights to the
useless data, affecting the ability to find the relevant items.

Essentially, softmax is one of mappings from Rd to4d−1,
where 4d−1 = {p ∈ Rd|1T p = 1, p ≥ 0} denotes
the d-1 dimensional simplex. Sparse transformations tend to
yield zero for the low-scoring in the vector, which is named
sparsemax (Martins and Astudillo 2016):

sparsemax(x) = argmin
p∈4d−1

||p− x||2 (1)

where x is the input vector and p is the output vector. In
this paper, we introduce a novel family of the transforma-
tion function, namely α-entmax (Peters, Niculae, and Mar-
tins 2019), to replace the softmax, which has been proven
useful for the application of NLP (Garg et al. 2019; Correia,
Niculae, and Martins 2019),

α-entmax(x) = argmax
p∈4d−1

pTx+HT
α (p), where

HT
α (p) =


1

α(α− 1)

∑
j

(pj − pαj ), α 6= 1

HS(p), α = 1

(2)
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Figure 2: Illustration of α-entmax in the two-dimensional
case.

where HT
α (p) is the Tsallis α-entropies (Tsallis 1988),

which is a family of entropies parametrized by a scalar
α > 1. From the equation 2, we can prove that the softmax
function equals 1-entmax and sparsemax is the 2-entmax,
where the Shannon entropy and Gini entropy are the entropic
regularizers respectively. As illustrated in Figure 2, the pa-
rameter α controls the shape and sparsity of this function.
When 1 < α < 2, this function tends to produce sparse
probability distribution and has smooth corners. In this pa-
per, in order to distinguish unrelated information in the ses-
sion, we replace the transformation function with α-entmax
in the attention mechanism. Moreover, we present a method
to automatically learn α, allowing each session to choose the
parameter based on the context adaptively.

Method
In this section, we present the proposed model in detail. This
model has four main components: embedding layer to con-
vert input session into two vectors, target embedding learn-
ing to exploit the item-level collaborative information by
sparse self-attention, target attention layer to combine with
initial information, and prediction layer for the final result.
The complete pipeline of the calculation is demonstrated in
Figure 3.

Embedding layer
First of all, we present an embedding layer to convert the
input session into two vectors. One is the item embedding,
and the other is the positional embedding. We introduce a
learnable positional embedding module (Sun et al. 2019),
which is used to map the position index to a dense vector
for capturing the temporal influence of the input. Formally,
given the input session St = {s1, s2, ..., st}, for any element
sp ∈ St, the hidden representation of it is

ci = Concat(xi, pi) (3)

where xi ∈ Rd is the embedding of the item, pi ∈ Rd is
the positional embedding of the item, and ci ∈ R2d is the
concatenated embedding of the item and position. Positional
embeddings allow the proposed model to know about the
portion of the session that it is dealing with, so the concate-
nated embedding could learn about the item’s collaborative
information of the item and position within the session.
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Figure 3: The general architecture of the proposed model.
The red dot line indicates a possible zero weight value.

In order to learn the current user’s preference represen-
tation without specifying the target item information, we
append a special item index (e.g., the largest item index
plus one) at the end of the input sequence, which is de-
noted by xs with its position embedding ps and is ini-
tialized with other item embeddings, to indicate the item
that we need to predict. So the concatenated embedding is
Ĉ = {c1, c2, ..., ct, cs}. cs, at the position of t + 1, is com-
posed of xs and ps, including the information of the special
item index and the position of the item to be predicted. The
special item index in different sessions share the same em-
bedding.

Target Embedding Learning
As illustrated in Figure 3, the outputs of the embedding layer
are the concatenated embeddings Ĉ. Then we introduce how
to learn the target embedding by self-attention to fuse the en-
tire context of the session. Firstly, we adopt the Scaled Dot-
Product Attention with the sparse transformation to capture
the dependency between item pairs within the session:

Â = α-entmax(
QKT

√
2d

)V (4)

where Q contains representations of the queries, K is the
key matrix, and V is the value matrix of the items attended.
In this layer, the sparse transformation is used to generate the
attention weight for the first time to ensure that the learned
target embedding and new item embeddings contain less un-
related information as much as possible. For each session,
we learn its own α by:

α = σ(Wαcs + bα) + 1 (5)

where Wα ∈ R1×2d denotes the weighting matrix, b ∈ R
is the bias value, and σ denote the sigmoid function. In this
way, α is determined by cs in different session, which in-
cluded the special item index and the largest position. The
value of α is also mapped to [1, 2], which has a smooth cor-
ner. Then we make K = V = Ĉ, but

Q = f(ĈWQ + bQ) (6)

where WQ ∈ R2d×2d is the weighting matrix, bQ ∈ R2d

is the bias vector and f(·) denotes activate function ReLU.
Through the projection, the representation of the item can be
more flexible. For example, the dot product in self-attention
satisfies the commutative law, that is,QKT is equal toKQT
if Q = K, leading to the different role of the item may have
the same effect.

Although the self-attention mechanism learns the new
representation of all items, it is mainly based on linear pro-
jections. Then we apply Position-wise Feed-Forward Net-
work to endow the model with more non-linearity,

FFN(Â) = max(0, ÂW self
1 + b1)W

self
2 + b2 (7)

where W self
1 ,W self

2 ∈ R2d×2d are both weighting matri-
ces, b1, b2 ∈ R2d are bias vectors, and all sessions will share
the same parameters. After that, we add a residual connec-
tion and layer normalization on the result to alleviate the
instability of the model training. We also add the dropout
mechanism to alleviate the overfitting. For simplicity, we de-
fine the whole sparse self-attention network above as

E = SAN(Ĉ) (8)

where E = {e1, e2, ..., et, es} is the final output of self-
attention network. Additionally, {e1, e2, ..., et} are new item
embeddings of the session after the information extraction
by the network. es is the learned target embedding, which
contains the special item index and fuses the entire session’s
information to denote the user’s real current preference.

Target Attention Layer
The self-attention network can be considered as a feature ex-
tractor, in which each item embedding contains the informa-
tion with each other, including the learned target embedding.
However, it ignores the initial information after the informa-
tion extraction.

Therefore, in this layer, we directly apply a vanilla atten-
tion network based on the different query, key, and value to
learn the entire session representation. Given E ∈ R|Ĉ|×2d,
the target attention layer aims to learn the whole session
representation based on the learned target embedding and
the initial input. Formally, a feed-forward network is used to
learn the weight:

βp = α-entmax(W0f(W1ep +W2es + ba)) (9)

where W1,W2 ∈ R2d×2d,W0 ∈ R1×2d are the weighting
matrices, ba ∈ R2d is the bias vector, f(·) denotes the acti-
vation function ReLU, and α is given by

α = σ(Wαes + bα) + 1. (10)



Noting that K = {e1, e2, ..., et} is the key matrix and
es is the vector of query, which are both the outputs of the
equation 8. Here we use the sparse transformation again to
get rid of the unrelated items in the initial input session when
learning the whole session representation.

In a word, we use the learned target embedding to be the
query, and the new item embeddings learned by the self-
attention network to be the key. βp represents the attention
weight of the item ep with the learned query item es. As a
result, this attention weight is based on the known informa-
tion of all clicked items and the target item. It can capture
the correlations between the item within the session and the
user’s current preference.

After obtaining the attention score vector β =
{β1, β2, ..., βt} with respect to the current session prefix
St, the session representation can be calculated as hs =∑
p=1 βpcp, where hs ∈ R2d denotes the session represen-

tation and cp is the value vector, which is initial item embed-
ding before entering into the self-attention network.

Prediction Layer
In this layer, we evaluate the probability of the next clicking
item based on the outputs above. We first concatenate the
learned target embedding es and the session embedding hs,
and then apply a feed-forward neural network to get the final
representation of the proposed model,

h = Concat(es, hs)

z = f(Wzh+ bz)
(11)

where z ∈ Rd denotes the final output of the proposed
model, Wz ∈ Rd×4d is the weighting matrices, bz ∈ Rd
is the bias vector and f(·) is the non-linear activation func-
tion SELU (Klambauer et al. 2017). For each item i ∈ I , we
get its probability as follows:

ẑ = wkL2Norm(z), x̂i = L2Norm(xi)

ŷi = softmax(ẑT x̂i)
(12)

where xi is the initial embedding of the item i and ŷi de-
notes the probability of the item in the candidate item set
I . L2Norm is the L2 Normalization function and wk is
the normalized weight. This weighted normalization (Gupta
et al. 2019) and the Regularizing Softmax loss (Zheng, Pal,
and Savvides 2018) make the training process more stable
and insensitive to hyper-parameters.

Finally, the loss function is defined as the cross-entropy
of the prediction and the ground-truth. It can be written as
follows:

L(y, ŷ) = −
m∑
j=1

yi log(ŷi) (13)

where y is the one-hot encoding vector of the ground truth
item.

Experiments and Analysis
In this section, we first describe the setup of the experiments.
And then, we design experiments to prove the performance
of our proposed DSAN and conduct detailed analysis under
different experimental settings.

Table 1: Statistics of datasets used in the experiments

Datesets # train # test # clicks # items
Diginetica 526,135 44,279 858,108 40,840

Retailrocket 433,648 15,132 710,586 36,968

Experiemts setup
Datasets To evaluate the effectiveness of the proposed
model, we use two real-world representative datasets, i.e.,
Diginetica1 and Retailrocket2. For simplicity, we name them
DN and RR. The DN dataset comes from CIKM Cup 2016,
and we only used the released transaction data. The RR is
a dataset on a Kaggle contest published by an e-commerce
company, which contains the user’s browsing activity within
six months. Both two datasets are publicly available.

For a fair comparison, we follow the previous work
(Xu et al. 2019) to filter out all sessions of length
less than 3 and items which are fewer than 5 occur-
rences in each dataset, and then we take last week in
the two datasets as the test set. Furthermore, we con-
ducted a segmentation preprocessing for the session. For
each input session S = {s1, s2, ..., sn}, we have gen-
erated the corresponding session prefix and label pairs
([s1, s2]; s3), ([s1, s2, s3]; s4), ..., ([s1, s2, ..., sn−1]; sn). It
is worth noting that the session containing at least two items
is more conducive to methods based on the GNN (Xu et al.
2019). The statistics of the three datasets after preprocessing
are shown in Table 1.

Baselines and Metrics We compare the proposed model
DSAN with the following methods:

• S-POP recommends the most popular items in the current
session. It is an improved version of the popularity-based
method.

• FPMC (Rendle, Freudenthaler, and Schmidt-Thieme
2010) is a hybrid model combining matrix factorization
and Markov chains.

• SKNN (Jannach and Ludewig 2017) is a session-based
k-nearest-neighbors approach.

• STAN (Garg et al. 2019) is an extension of SKNN ap-
proach with some additional factors.

• GRU4Rec (Hidasi et al. 2016) is a session-based recom-
mendation model based on GRU layers.

• STAMP (Liu et al. 2018) is a short-term memory priority
model, which exploits the user’s current interest reflected
by the last-click.

• SR-GNN (Wu et al. 2019) is a session-based recommen-
dation model that applies a graph neural network to learn
the item and session representation.

• GC-SAN (Xu et al. 2019) makes recommendations by
combining a single-layer graph neural network and multi-
layer self-attention network.

1http://cikm2016.cs.iupui.edu/cikm-cup
2https://www.kaggle.com/retailrocket/ecommerce-dataset



Table 2: Performance of all recommendation models. The boldface is the best result over all methods, the underline is the best
result of all baselines, and ∗ denotes the significant difference for t-test .

Datasets Diginetica Retailrocket
Metrics HR@5 HR@10 HR@20 MRR@5 MRR@10 MRR@20 HR@5 HR@10 HR@20 MRR@5 MRR@10 MRR@20
S-POP 0.2016 0.2154 0.2168 0.1305 0.1325 0.1326 0.3417 0.3578 0.3803 0.2446 0.2468 0.2481
FPMC 0.2468 0.3310 0.4206 0.1458 0.1570 0.1632 0.2002 0.2599 0.3237 0.1258 0.1338 0.1382
SKNN 0.2518 0.3643 0.4898 0.1391 0.1540 0.1627 0.3839 0.4674 0.5428 0.2481 0.2593 0.2646
STAN 0.2744 0.3814 0.5008 0.1613 0.1755 0.1837 0.3847 0.4656 0.5348 0.2525 0.2633 0.2681

GRU4Rec 0.2991 0.4143 0.5414 0.1691 0.1843 0.1932 0.3263 0.3835 0.4401 0.2250 0.2327 0.2367
STAMP 0.4266 0.5277 0.6250 0.2687 0.2822 0.2890 0.3524 0.4295 0.5096 0.2358 0.2461 0.2517
SR-GNN 0.4198 0.5307 0.6377 0.2620 0.2769 0.2844 0.3569 0.4321 0.5032 0.2505 0.2607 0.2657
GC-SAN 0.4279 0.5345 0.6389 0.2703 0.2845 0.2918 0.3675 0.4410 0.5118 0.2593 0.2692 0.2740
Bert4Rec 0.3904 0.5117 0.6263 0.2308 0.2471 0.2551 0.3737 0.4585 0.5419 0.2469 0.2584 0.2642
CoSAN 0.4200 0.5354 0.6424 0.2542 0.2696 0.2771 0.3514 0.4381 0.5247 0.2264 0.2380 0.2440
DSAN 0.4665∗ 0.5772∗ 0.6821∗ 0.3024∗ 0.3173∗ 0.3246∗ 0.4153∗ 0.4905∗ 0.5654∗ 0.2920∗ 0.3021∗ 0.3074∗
Improv. 9.02% 7.81% 6.18% 11.88% 11.53% 11.24% 7.04% 4.75% 3.78% 11.61% 10.70% 11.28%

• Bert4Rec (Sun et al. 2019) is a method that employ the
deep bidirectional self-attention to model user behaviors
for sequential recommendation.

• CoSAN (Luo et al. 2020) learn the session representation
and predict the intent of the current session by investigat-
ing neighborhood sessions.

We adopt two common metrics on session-based recom-
mendation in this paper, Hit Rate(HR@K) and Mean Recip-
rocal Rank (MRR@K). HR@K is the proportion of cases
when the ground truth is ranked amongst the top-K items. It
is used to evaluate unranked results. MRR@K is the average
of reciprocal ranks of the desired items, which is the evalu-
ation of ranked results. In this study, we consider the Top-K
(K = 5, 10, 20) recommendation results.

Parameters setup In this paper, all hyper-parameters are
optimized via grid search on each dataset, respectively.
According to the experimental results, the optimal hyper-
parameters are {η : 0.001, ε : 0.5, wk : 20} on two datasets,
where η is the learning rate, ε is the dropout rate and wk
is the normalized weight. We use Adam as the model op-
timizer, and explore the case that embedding dimension
d = 100 for a fair comparison, which is the hyper-parameter
in the previous work. We implement the model by Pytorch,
and the mini-batch settings are {batch size: 512, epoch: 50}.

Results and Discussion
Overall performance To demonstrate the recommenda-
tion performance of our proposed model DSAN, we com-
pare it with other state-of-the-art baselines. The experimen-
tal results on two datasets are shown in Table 2.

The first four methods, S-POP, FPMC, SKNN and STAN,
are all improved conventional methods, but they have
achieved significant results. Firstly, the performance of
FPMC is poor since we consider each session as a user
but do not have the long-term user profile. However, SKNN
and STAN reach competitive results compared with neural-
networks methods, especially on RR dataset. They are all
improved version of the KNN method, proving that the
conventional methods are not necessarily weaker than the
neural-network-based methods when they incorporate with
the session-level information.

Neural-network-based models can generally achieve bet-
ter results except for GRU4Rec. GRU4Rec, the first
proposed neural-network-based method to solve session-
based recommendations, performs worst among all neural-
network methods. Furthermore, the STAMP model, which
considers long-term and short-term memory fusion in the
session and especially regards the last-click as the user’s
current preference, reaches a not very prominent result on
RR dataset. SR-GNN and GC-SAN both construct graphs
for sessions, but GC-SAN incorporates self-attention net-
works. Therefore, the performance of GC-SAN is bet-
ter than SR-GNN, since it combines the long-range self-
attention representation and the short-term interest of the
last-click. Bert4Rec also has a learned embedding, including
the known positional information, but they directly use the
last layer to present the whole session, ignoring the initial
information. As we can see, its result is competitive but still
inferior to our proposed model. Similarly, CoSAN combines
the self-attention network and the session-level collaborative
information, which performs equally well or significantly
better in some cases than other neural-network-based meth-
ods. It is noted that the three models with the self-attention
network all have competitive performance, demonstrating
the importance of this feature extraction method.

Our proposed model DSAN outperforms all baselines sig-
nificantly. Compared to Bert4Rec, we introduce a dual atten-
tion network with a learned target embedding, which is ap-
plicable to different situations. Compared with CoSAN and
GC-SAN, DSAN adopts the self-attention mechanism for
the whole session representation and a learned target embed-
ding to be the query vector for the user’s real intent, leverag-
ing all known information for the final representation. With-
out investigating neighborhood sessions and adopting the
graph neural network, we can still achieve the best results.

Effect of the dual attention network In order to verify
the effect of each module, we design three contrast models
for comparison: DSAN-NS does not have the target embed-
ding learning and uses the last-click as the query in a vanilla
attention network. DSAN-NT does not have the target at-
tention layer, which only uses the learned target embedding
from the self-attention network as the whole session repre-
sentation. DSAN-DA separates self-attention and vanilla at-



Table 3: Impacts of the dual attention network. The boldface
is the best result.

Datesets DIGINETICA RETAILROCKET
Metrics HR@20 MRR@20 HR@20 MRR@20

DSAN-NS 0.6552 0.3095 0.5322 0.3000
DSAN-NT 0.6788 0.3228 0.5646 0.3040
DSAN-DA 0.6696 0.3220 0.5600 0.3010

DSAN 0.6821 0.3246 0.5654 0.3074

tention into two parallel structures, which also use the last-
click as a query in the vanilla attention layer.

As shown in Table 3, we report the result on HR@20 and
MRR@20. First of all, we can observe that DSAN-NS has
the worst performance, indicating that the last-click does not
exhibit the user’s real intent and interest in all cases. In con-
trast, DSAN-NT has the second better performance, prov-
ing that the learned target embedding positively contributes
to the result of a given session. DSAN-DA is better than
DSAN-NS but worse than DSAN-NT, which further proves
the problem of using the last-click. Both DSAN-NS and
DSAN-NT only have one single attention network, and their
performances are worse than the proposed model DSAN, in-
dicating the importance of the dual attention module; indeed,
it can get a better representation of the whole session. Also,
the fact that DSAN performs best in all cases demonstrates
the advantages of considering both the dual attention net-
work and the learned target embedding. This experiment is
also an ablation experiment for our proposed model, which
proves that each module in the model structure is an indis-
pensable content.

Comparison with different transformation function To
demonstrate the utility of α-entmax, we compare the ex-
perimental results on two datasets using the proposed
adaptive α and the fixed α. The range of fixed α is in
{1, 1.2, 1.4, 1.6, 1.8}. We set the minimum session length
of 15 since the longer session is more likely to contain unre-
lated click information. As illustrated in Figure 4, the perfor-
mance of the softmax function, which is α = 1, is relatively
poor. We infer that the probability of users being affected by
the external environment significantly increases in the longer
session, so that the longer session may have more unrelated
items, but the softmax function still gives small weight to
them. The performance based on the adaptively sparse trans-
formation is better than most fixed α, indicating that each
session has its own best α based on the context. Besides, we
notice that the overall performance of the longer session is
worse than the result in Table 2, which proves that the task of
session-based recommendation in the long sessions is more
difficult. Therefore, the sparse transformation, which can ef-
fectively improve the prediction accuracy in long sessions,
is of great significance.

Influence of the normalized weight wk In order to ex-
plore the stability of DSAN, we explore the influence of the
hyper-parameterwk. Session-based recommendation suffers
from popularity bias, and cross-entropy based on dot prod-
uct makes target items with higher L2 norm easier to be pre-
dicted. However, when we use L2 Normalization function,

DN RR

0.15

0.20

0.25

0.30

0.35
DSAN
softmax

= 1.2
= 1.4
= 1.6
= 1.8

(a) HR@20
DN RR

0.04

0.06

0.08

0.10

0.12

0.14

0.16
DSAN
softmax

= 1.2
= 1.4
= 1.6
= 1.8

(b) MRR@20

Figure 4: Experimental results with different transformation
function on two metrics.
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Figure 5: Performance with different normalized weight wk
on two datasets.

the cosine similarity is restricted to [−1, 1]. A scaling fac-
tor wk is useful in practice to allow for better convergence,
which gets saturated at high values for the training set. Com-
pared to all baselines, this is a unique hyper-parameter of the
proposed model.

As shown in Figure 5, the effectiveness of the proposed
model is extremely related to this parameter. When wk =
1, it is equivalent to the cosine similarity and the model
achieves the worst result, indicating that it is not a good
measure. As wk increases, the result gradually improves on
both datasets, and they both achieve the best result when
wk = 20, proving that the appropriate value can make the
training of this model more stable to get better performance.
With wk further increase, the result has declined since a too
larger value will lead to overfitting and thus affect the pro-
posed model’s performance.

Conclusion and Future work
In this paper, we propose a dual sparse attention network for
session-based recommendation. Specifically, we first use a
self-attention network with the positional embedding to gen-
erate the target item embedding and then integrate a vanilla
attention network to learn the entire session representation.
Next, we combine the two vectors to rank all items. We also
introduce a new adaptively sparse transformation function
to replace the softmax, making useful information more fo-
cused. Extensive experimental analysis verified that our pro-
posed model DSAN is superior to state-of-the-art methods.
In the Future work, we plan to explore the way of using au-
tomated machine learning to delete the unrelated item in the
session before entering into the network, so that the model
can learn more useful information.
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